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Channel flows over erodible beds are susceptible to instabilities of the coupled fluid
and sediment flow equations. The most dangerous mode usually takes the form of
a migrating alternating bar instability propagating in the flow direction. Previous
theories have assumed that the underlying flow is steady and here the theory is
extended to the unsteady situation. Stability characteristics are calculated for large-
amplitude oscillations superimposed on a mean flow. In addition it is found that the
basic instability is convective and we address the receptivity problem for bars induced
by flow oscillations interacting with spatial variations associated with seepage, channel
width variations etc. The effect of unsteadiness in the weakly nonlinear situation is
also discussed. A mechanism which allows flow oscillations to interact with migrating
bars to produce a sinusoidal structure fixed in space which might be relevant to
meander formation is discussed.

1. Introduction
Our concern is the role of flow unsteadiness in the formation of alternating bars in

channel flows. We will restrict ourselves to time variations on the scale of the transport
of sediment and will further confine our attention here to the case when the time
variation is periodic though the analysis is valid for more general time dependences.
In the periodic case Floquet theory gives a natural definition of instability and we
are not confined to restricted sizes of the amplitude and frequency of the unsteady
part of the flow.

It has been known for a long time that the flow in a channel with an erodible bed
is unstable to alternating bars which propagate in the flow direction and produce
distinct fronts separating the higher and lower regions of the bed. The reader is
referred to Columbini, Seminara & Tubino (1987, hereafter referred to as CST), for
a discussion of the early linear theories of bar formation. The formation of bars has
important consequences for the navigation of the channel. Indeed, as pointed out to
the author by a referee, bars are believed to be the fundamental morphodynamic
building block required to form meanders and braided beds and therefore have
important consequences for river ecology and river training.

Various proposals have been made about the relationship between bar formation
and meanders in rivers. See, for example Blondeaux & Seminara (1985, hereafter
referred to as BS), for a discussion. The main difficulty in the identification of bars
as a source for the generation of meanders in rivers is the fact that almost all
of the unstable wavenumbers correspond to bars migrating in the flow direction
whereas a spatially fixed alternating bar naturally produces high shear stresses over
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the ‘pools’, leading to a migration of the channel. Thus, without being able to
fix bars spatially, there is no obvious mechanism through which they can produce
meanders; we will argue that flow unsteadiness is a possible means to fix the bars. The
most popular model for the evolution of meanders is that given by Johannesson &
Parker (1989). The planimetric evolution equation given in that paper has formed
the basis for a series of papers on meanders by for example Parker & Andrews
(1986), Furbish (1988) and Howard (1996). Note however that many of the ideas
given in Johannesson & Parker (1989) can be found in BS. More recently a simpler
meander evolution equation has been proposed by Zolezzi & Seminara (2001). At very
small wavenumbers there is a zero-frequency mode which corresponds to stationary
bars but it has a wavelength much larger than typical meander wavelengths and
BS show how this mode crucially interacts in a resonant manner with a streamwise
variation induced by an existing meander. However it appears that there is no
general agreement on whether this resonant interaction can lead to the formation of
meanders.

Here we will attempt to shed light on the linear and nonlinear stages of bar
development in unsteady flows. The unsteady variations which we consider take place
on the sediment transport timescale. Seasonal variations in channel depth and flow
speed for the gravel bed rivers considered here take place on a somewhat longer
timescale, but, since our results will be seen to be independent of the frequency of the
variations, our theory is relevant to that case. It should also be noted that our analysis
can be carried over to sandy beds where time-periodic variations on the sediment
timescale are relevant, so it is worthwhile to study the periodic case. In addition, our
analysis is relevant to controlled floods where the flow rate is varied on the sediment
transport timescale. In the linear regime we will consider time-periodic channel flows
where the oscillatory component is comparable with the mean flow speed and we
determine how the critical channel width varies as a function of the amplitude of
the unsteady part of the flow. In order to carry out the stability analysis we will
first derive the form of time-periodic unidirectional solutions of the channel flow
equations. In our analysis we assume that the flow rate never falls below the level at
which sediment transport occurs; this assumption is usually not appropriate to gravel
beds but we will use it in order to simplify the analysis. Note again however that the
analysis given here could be extended to situations where transport is switched off
for part of a period.

In the existing theory on bar formation little attention has been given to the
question of what physical mechanism generates a particular bar wavelength. The
assumption implicitly made is that in a river there are so many sources of spatial
inhomogeneities that there will always be sufficient forcing at all wavelengths to
excite the most unstable bar. However in less disturbed environments, e.g. in man-
made channels or in laboratory experiments, the situation is less clear-cut. In fact
the situation is precisely that which has been studied in some depth in the context
of transition in the flow over airfoils. In that problem there is a variety of sources
for the generation of instability waves. However in both wind-tunnel experiments
and flight tests the particular disturbance generated depends precisely on the spatial
structure of the forcing. The major point to be appreciated is that boundary layer
instabilities are almost always convective in nature so an instability wave can only
be generated continuously if there is a disturbance source for all time. In the
context of boundary layer transition the process by which disturbances are converted
into instability waves is usually called the receptivity problem; see Ruban (1984),
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Denier et al. (1991), and Duck et al. (1996) for a discussion of the receptivity
problem for Tollmien–Schlichting and Görtler instabilities in boundary layers. In
boundary layers which are convectively unstable the effect of the instability is felt
only downstream of the source, in contrast to absolute instabilities (e.g. the Taylor
vortex problem) where a point disturbance at some instant in time t = 0 spreads in
all directions and persists for all positive t .

It appears that there has been no discussion of the convective/absolute instability
problem for bar instabilities but it is easy to show that bar modes are in fact
convective instabilities. This means that a migrating bar can only persist if there is
a continuous forcing to maintain its early growth before nonlinear effects become
important. Here we will show how spatial variations associated with seepage into
the channel, curvature variations, local constrictions or other spatial variations can
interact with flow unsteadiness to produce bars. In fact we can relate the amplitude
of the bar generated to the forcing mechanism through a ‘coupling coefficient’ and
see what kind of spatial variations are most or least efficient in the generation
of bars. Thus, for example, we discuss how dykes entering the main channel or
indentations made in the bank should be arranged so as to minimize or maximize bar
formation.

The receptivity process is essentially a linear one and explains why only particular
spatial variations are converted into migrating bars. Once a disturbance is sufficiently
large nonlinear effects come into play and inhibit the exponential growth of linearly
unstable modes; see CST. In the weakly nonlinear regime the multiple-scale version
of the Stuart–Watson theory shows how a growing mode saturates into a finite-
amplitude disturbance but in the nonlinear process the pattern associated with an
unstable mode continues to propagate downstream with almost the same phase speed
as that predicted by the linear theory. Thus there is no mechanism in operation
which can lead to a stationary structure capable of the generation of meanders. Here
we show how flow unsteadiness of small amplitude is sufficient to fix part of the
disturbance field spatially. This fixing of the bar migration might then play a role in
the generation of meanders.

The nonlinear theory we describe for unsteady flows might also be relevant to the
role of the suppression of free alternating bars by forced bars. Tubino & Seminara
(1990) have discussed the effect of a small-amplitude sinusoidal curvature distribution
on the growth of free bars within the context of linear stability theory. Since the forced
bar is steady on the free-bar timescale at least two nonlinear interactions involving
the free and forced bars are required to produce an effect on the free bar’s growth
rate. This means that a small curvature distribution of size χ can at most stabilize
or destabilize free bars by an amount O(χ2). However if the basic state contains
an unsteady component of size δ then the effect can be increased to O(χδ) so that
for large unsteady variations the effect on the free bar is increased by an order of
magnitude.

The procedure adopted in the rest of the paper is as follows: in § 2 we formulate
the system of equations governing transport of sediment in a straight channel with
the flow described by the St Venant shallow-water equations. In § 3 we discuss the
linear instability of time-periodic basic states and show the effect of flow unsteadiness
on the stability properties of the flow. In § 4 we investigate the receptivity problem
for free bars in an unsteady flow in a channel subject to spatial variations introduced
at the sidewalls. In § 5 we discuss the role of unsteadiness in the weakly nonlinear
regime and give some conclusions.



52 P. Hall

2. The governing equations
We follow the formulation of the governing equations given by CST and the reader

is referred to that paper for a detailed discussion of the approximations leading to
the equations. We consider the flow in a rectangular channel of width 2B∗

0 and typical
depth D∗

0 and scale the downstream and spanwise variables s∗ and n∗ on B∗
0 so that

(s, n) = (s∗, n∗)/B∗
0 .

If U and V are the dimensionless velocity components, scaled on a typical speed U ∗

in the s∗-direction, then the St Venant equations of quasi-steady shallow-water flow
for a channel of sufficient width that the motion in the sidewall boundary layers can
be neglected are

U
∂U

∂s
+ V

∂U

∂n
= −∂H

∂s
− βτs

D
,

U
∂V

∂s
+ V

∂V

∂n
= −∂H

∂n
− βτn

D
,

∂

∂s
(UD) +

∂

∂n
(V D) = 0,


(2.1)

where H and D are the dimensionless local water surface and depth defined by

(H ∗, D∗) = D∗
0

(
F 2

0 H, D
)
,

with the Froude number F0 given by

F 2
0 =

U ∗2

gD∗
0

.

Here g is the acceleration due to gravity. Finally the parameter β appearing above
denotes the dimensionless width of the channel and is defined by

β =
B∗

0

D∗
0

, (2.2)

whilst τs and τn are the bottom shear stresses in the s- and n-directions respectively
and have been scaled by ρU ∗2. See Johannesson & Parker (1989) for a discussion
leading to the form of the St Venant equations given above.

Suppose next that the sediment flow rates in the s- and n-directions are made
dimensionless using {((ρs − 1)/ρ)gd∗

s }1/2 as an appropriate scale. Thus we write

(Q∗
s , Q

∗
n) = d∗

s

{(
ρs

ρ
− 1

)
gd∗

s

}1/2

(Qs, Qn), (2.3)

when ρsand ρ are the sediment and fluid densities, and d∗
s is a typical sediment size.

If we scale time t∗ by writing

t∗ =
B∗

0

U ∗ t, (2.4)

then the continuity equation for the sediment is

∂

∂t

(
F 2

0 H − D
)

+ Q0

(
∂Qs

∂s
+

∂Qn

∂n

)
= 0. (2.5)
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Here the first term represents the local time rate of change of sediment depth and Q0

is the ratio of the scale of sediment discharge and the flow rate so that

Q0 = d∗
s

{(
ρs

ρ
− 1

)
gd∗

s

}/
[(1 − p)D∗

0U
∗],

where p is the sediment porosity.
It should be noted that the only explicit dependence on t of the equations appears

in the sediment continuity equation. The system must be closed by writing down an
equation which relates the sediment flow rates to the bottom stresses. Following, for
example, CST we write

(τs, τn) = C(U, V )
√

U 2 + V 2, (2.6)

and, if the bed is planar, we write

C =

[
1

6 + 2.5 ln(D/2.5ds)

]2

, (2.7)

where ds = d∗
s /D

∗
0 . If the bed is non-planar alternative forms of (2.7) are available

but we will restrict our attention here to the planar case. The equations (2.6) and
(2.7) are somewhat empirical in nature and the reader is referred to Ikeda & Parker
(1985) for some motivation for the use of these equations. It remains for us to discuss
an appropriate model for the transport of sediment. Fredsoe (1978) has discussed
the relative importance of bedload and transport in suspension for bar instabilities.
We make the approximation that transport in suspension may be neglected but note
there is no intrinsic difficulty with the analysis here if we assume a more complicated
model. If the sediment is transported mainly as bedload, we write

(Qs, Qn) = (cos �, sin � )Φ, (2.8)

where Φ is the sediment load function and � is defined by

sin � =
V√

U 2 + V 2
− r

βθ1/2

∂

∂n

(
F 2

0 H − D
)
. (2.9)

Here θ is the Shields parameter defined below and r is a constant usually taken
to be in the range (0.3, 0.6), though CST argue that the lower value of 0.3 is more
appropriate. Equation (2.9) is of course a semi-empirical relation and has been widely
used to discuss the morphological evolution of cohesionless channels. If we neglect the
second term on the right-hand side of (2.9) the sediment follows the flow streamlines;
the second term is a model of how flow curvature alters the transport. The reader is
referred to Kikkawa, Ikeda & Kitagawa (1976) and Parker & Andrews (1986) where
some justification for the use of (2.9) can be found. It should also be pointed out
that (2.9) is essentially a first-order linear approximation though Tubino & Seminara
(1990) argue that a weakly nonlinear generalization of the equation is probably
not necessary to describe small but finite-amplitude perturbations. Finally, following
Chien (1954), the sediment load function Φ is given by the Meyer–Peter–Muller
formula

Φ = 8(θ − 0.047)3/2, (2.10)

Here θ is the shields stress defined by

θ =
τ ∗
o

(ρs − ρ)gd∗
s

, (2.11)
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and we see that θ − 0.047 must be positive for Φ to be real. For negative values
of this quantity the shear stresses at the bottom are too small to set the sediment
particles into motion and there is no transport. Thus when θ − 0.047 is negative we
take Φ = 0 but for the rest of this paper we will assume that the flow is strong
enough for transport always to take place.

More precisely, we write

θ = Θ0

√
τ 2
s + τ 2

n , (2.12)

where Θ0 = ρU ∗2

/((ρs − ρ)gd∗
s ), which, apart from a factor C, is the shields stress for

a uniform flow (U, V ) = (1, 0) in a channel of unit depth.

2.1. The basic states for unsteady flows

Equations (2.1) and (2.5) support the basic steady configuration

(U, V, H, D) = (1, 0, H0, 1), (2.13a)

τs = C0 =

(
1

6 + 5
2
ln(2/5ds)

)2

, (2.13b)

Qs = Φ0 = 8(Θ0C0 − 0.047)3/2, (2.13c)

H0 = constant − βC0s. (2.13d)

Thus, the flow is unidirectional and driven by the linear decrease along s of the
water surface elevation. The sediment continuity equation is the only part of the
system which has an explicit time dependence but we can in fact generate a family of
unsteady solutions of the system by choosing the water surface H and velocity field
to have particularly simple forms. These forms will be chosen in order to model the
physical situation where the flow quantities will certainly have a time dependence on
the scale during which bars develop.

We seek a solution of the equations of motion in the form of a unidirectional
unsteady flow of the type

(U, V ) = (Ū (t), 0) with D = D(t). (2.14)

The bottom stress τs is then given by

τs = CŪ 2, C =

(
1

6 + 5
2
ln(2D/5ds)

)2

. (2.15)

The streamwise momentum equation then yields

∂H

∂s
= −βCU

2

D(t)
. (2.16)

We restrict attention to the case when the above ratio is independent of time which
effectively enables us to find a separable solution of the equations. Thus if, for
example, U (t) is specified, D is given implicitly by the equation

C(t)U
2
(t)

D(t)
= constant = J 2. (2.17)

The equations (2.14)–(2.17) imply that, on the bar timescale, the basic flow may
be treated as a sequence of uniform flows as is the case with the kinematic wave
approximations used to model flood waves. We will pay particular attention to the
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Figure 1. The function U (t) for δ = 0, 0.3, 0.5, 0.7 with F0 = 0.51/2.
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Figure 2. The function D(t) for δ = 0, 0.3, 0.5, 0.7 with F0 = 0.51/2.

case when U is a periodic function of time so, in order to normalize the flow, we
suppose U has a mean value in time of unity and then take

J 2 = C(D = 1) = C0. (2.18)

Of course, we could alternatively specify D(t) in which case (2.17) determines the
corresponding flow field explicitly. (In fact observations usually record flow rates in
which case U (t)D (t) should be specified and then (2.17) can be used to find the
velocity and depth.) The water surface elevation H is then given by

F 2
0 H = D − F 2

0 βJ 2s, (2.19)

which means (2.5) will be satisfied since Qn = 0 and Qs will depend only on t . In
figures 1, 2 and 3 we show solutions of U , D(t) and Φ when U has been chosen
to be U = 1 + δ cos ωt, with δ = 0, 0.3, 0.5, 0.7. Whilst values of δ as large as 0.7
are appropriate for gravel bed rivers, the condition that the flow never becomes slow
enough for transport to cease means that our results for such large values of δ may
not be physically relevant.
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Figure 3. The function Φ(t) for δ = 0, 0.3, 0.5, 0.7 with F0 = 0.51/2.

3. Linear instability for unsteady basic states
Previous investigations of the bar instability mechanism in rectangular channels

have concentrated on steady basic states. Here, we perturb the unsteady basic states
defined above by writing

(U, V, H, D) = (U, 0, H, D) + (U1, V1, H1, D1)e
iλs + complex conjugate + . . . .

where U1, V1, H1 and D1are functions of n and t and are assumed to be small. If the
corresponding perturbations in (τs, τn) and (Qs, Qn) are denoted by (τs1, τn1)e

iλs and
(Qs1, Qn1)e

iλs respectively then the linearized forms of (2.1) and (2.5) are found to be(
iλU1 +

∂V1

∂n

)
D + U iλD1 = 0, (3.1a)

U iλU1 + iλH1 + β

(
τs1

D
− D1τs

D2

)
= 0, (3.1b)

U iλV1 +
∂H1

∂n
+

βτn1

D
= 0, (3.1c)

∂

∂t

(
F 2

0 H1 − D1

)
+ Q0

(
∂Qn1

∂n
+ iλQs1

)
= 0. (3.1d)

Here, the stress τ s is the stress associated with the unperturbed basic state and
therefore is given by

τ s = C(t)U
2
(t).

The perturbed stresses τs1 and τn1 and sediment flow rates Qs1, Qn1 are found to
be given by

τs1 = C(s1U1 + s2D1), (3.2a)

τn1 = CV1U, (3.2b)

Qs1 = Φ(t) (f1U1 + f2D1) , (3.2c)

Qn1 = Φ
(
V1/U − R

(
F 2

0 H1n − D1n

))
. (3.2d)
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Here the coefficients s1, s2, f1, f2, R, Φ are defined by

s1 = 2U, s2 =
U

2
∂C/∂D

C
,

f1 =
2Θ0

Φ
UC

∂Φ

∂θ
, f2 =

U
2
Θ0(∂C/∂D)(∂Φ/∂θ )

Φ
,

R =
r

β
√

Θ
, Φ = 8(Θ − 0.047)3/2, Θ = θ0CU

2
.

3.1. Boundary conditions

The banks of the river are defined by n = ±1 and at this stage they are supposed to
be impermeable to the fluid and sediment so we must impose the conditions

V1 = Qn1 = 0, n = ±1. (3.3)

Following CST we notice that a solution of (3.1), (3.2) consistent with (3.3) takes the
form

(U1, V1, D1, H1, Qs1, Qn1, τs1, τn1)

= (Û 1Sm, V̂ 1Cm, D̂1Sm, Ĥ 1Sm, Q̂s1Sm, Q̂n1Cm, τ̂s1Sm, τn1Cm),

where Cm = cos 1
2
mnπ, Sm = sin 1

2
mnπ and Û 1, V̂ 1, etc. are functions only of t . After

some manipulation, we find the following equation for H1(t):

dĤ 1

dt
= P1(t, λ)Ĥ 1, (3.4)

where P1(t, λ) is given by

P1(t) =
−ΦQ0

F 2
0 − D̂1

{
−V̂ 1M

U
+ RM2

[
F 2

0 − D̂1

]
+ iλ[f1Û 1 + f2D̂1]

}
+

dD̂1/dt

F 2
0 − D̂1

= P (t) +
dD̂1/dt

F 2
0 − D̂1

, (3.5)

where M = mπ/2 and

V̂ 1 =
−M

iλU + βCU/D
,

Û 1 =
{−M(s2βC − βτ s/D)V̂ 1 + λ2U}

iλ{−s2βC + βτ s/D + iλU
2
+ s1CβU/D}

,

D̂1 =
−D

iλU
{iλÛ1 − MV̂ 1} . . . .

Note that a quasi-steady description of the instability leads to an instantaneous
growth rate equal to P (t) in (3.5) and so would be in error. It follows from (3.4) that

Ĥ 1 =
Ĥ 10

F 2
0 − D̂1

exp

{∫ t

P (t) dt

}
, Ĥ 10 = constant. (3.6)
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If U and hence H, D are periodic functions of time with period 2π/ω, then we can
identify (3.6) with the Floquet solution

Ĥ 1 = eνtHp(t), (3.7)

where Hp is periodic with period 2π/ω and it then follows from (3.6) and (3.7) that

2πν =

∫ 2π

0

P̂ (τ ) dτ (3.8)

where P̂ (τ ) = P̂ (ωt) = P (t). Thus (3.8) shows that the Floquet exponent is in-
dependent of the driving frequency ω and that it is simply the average over a period
of the instantaneous growth rate predicted by quasi-steady theory. (Note that this
could have been inferred directly from (3.4) by expressing P in terms of mean and
non-zero mean parts and integrating.) In the special case when the basic state is
steady (3.8) reduces to the linear eigenrelation for the steady problem given by CST.

Of particular interest in the steady problem is the case when the imaginary part of
the Floquet exponent, νi , is identically zero, because that mode has been shown by BS
to lead to resonance when curvature is taken into account. In addition it is possible
that a stationary bar instability in an initially straight channel might cause scouring
at the banks leading to meanders. In the steady problem this possibility occurs only at
very small and probably physically unrealistic values of the bar wavenumber; see BS.
When δ is non-zero we see below that the possibility of a disturbance which contains
a non-propagating part exists over a wide range values of the driving frequency at
all values of the wavenumber. This result is perhaps the most crucial result of this
section since it implies that any real flow will have oscillatory components rather
than the usual steady flow assumed in the theory. In any straight channel, a fraction
of any propagating bar will be fixed spatially by unsteady effects thereby opening up
the possibility of meander formation by scouring. We can see this possibility by first
noting that

νi =
1

2π

∫ 2π

0

P̂ i(τ ) dτ,

and point out that νi is independent of the frequency ω. This means that eνtHp

will correspond to a disturbance which is a superposition of travelling waves and a
standing wave whenever

νi = nω, n = 1, 2, 3, . . . .

The case when n = 1 corresponds to the driving frequency of the basic flow being
coincident with the frequency of the bar. Note however that the frequency is a
function of the unsteady flow so to ‘fix’ part of a migrating bar of the steady problem
it is not quite good enough to drive the flow at the frequency of the mode of the
steady problem. However our calculations discussed below show that νi has a weak
dependence on the unsteady flow so the frequency needed for fixing a bar will be
close to that of the corresponding bar of the steady problem. Thus if we calculate the
neutral curve (νr = 0) for a range of values of λ with δ fixed then at each point on
the neutral curve in the (λ, β)-plane there will be an infinite number of choices for
the driving frequency which will lead to a disturbance having a mean component in
time at any fixed location. It is worth pointing out though that the fraction of the
bar fixed by the choice of n will fall off rather quickly with n. At these points the
instability will contain a part which is not propagating in the flow direction and will
therefore resonate with and indeed generate curvature effects. Therefore we see that,
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Figure 5. The dependence νi on δ for δ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 with F0 = 0.51/2.

though we shall see below that the effects of the forcing on the critical width and
wavelength are relatively mild, the forcing has a fundamental effect on the manner in
which the instability will interact with and possibly generate weak curvature of the
channel. Thus unsteady effects open up the possibility that resonant configurations
will now be much more widespread than is the case when δ = 0.

We concentrate on the case with U = 1 + δ cosωt and, in view of the above
discussion, we can take ω = 1 without any loss of generality. The neutral curves
in the (β, λ)-plane can be found by fixing λ and varying β until νr = 0. Figure 4
shows the neutral curves in the (β, λ)-plane for a range of values of δ. Figure 5
shows the dependence of νi on λ along the neutral curves for different values of δ.
We see that the migration speed of the bar is only weakly dependent on the forcing.
However, note that the time dependence of Hp interacts with the exponential time
dependence of Ĥ 1 to fix part of the bar at the values of ω defined above. Figure 6
shows the variation of the critical values of β and λ (scaled on their values for the
steady problem) with δ. Figure 7 shows the variation in the critical value of νi. We
observe that the flow unsteadiness has little effect on the critical value of β and νi but
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Figure 7. The variation of the critical value of νi with δ for F0 = 0.51/2.

pushes the critical wavenumber to significantly higher values. Thus flow unsteadiness
produces smaller-wavelength bars than are predicted by the steady theory. In the
absence of controlled unsteady experiments on bar formation we cannot check the
validity of this result. Indeed if we wish to check the validity of this result with
reference to rivers then the situation becomes more complex. If the bars are formed
at ‘bankfull’ conditions the most appropriate comparison of the critical wavenumber
for case U = 1 + δ cos ωt is with the steady flow with speed U = 1 + δ. With this in
mind we repeated the calculation leading to figure 6 with U = (1 + δ cos ωt)/(1 + δ).
The results are shown in figure 8 and we now observe a different trend, with the
critical width significantly reduced from its value expected on the basis of a steady
theory. In addition the increase in wavenumber is less than was the case without the
rescaling of δ. We also note that the trends in both wavenumber and width switch at
the higher values of δ.

Finally in this section we relate our linear stability theory for bars in unsteady flows
to the weakly nonlinear theory of Tubino (1991). Tubino was concerned with the effect
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on the bar instability problem of a small-amplitude unsteady flow superimposed on a
steady flow. Tubino was interested in the effect of flood waves so the unsteady flows
considered were not periodic in time. It is straightforward to show that the flows
investigated by Tubino can be found from (2.17) by expanding around a uniform
steady flow. In our problem it is easy to see that an O(δ) perturbation to a steady
flow will produce an O(δ2) correction to the growth rate of a bar instability. Tubino
gives a weakly nonlinear description of bar growth for small-amplitude unsteadiness
comparable with the deviation of β from its critical value. The expansion procedure
that he gives is valid only for unsteady flows varying on the same long timescale
over which weakly nonlinear disturbances grow. Since his unsteady flow is not time
periodic Tubino argues that the growth rate is altered at order δ rather than O(δ2)
as is the case here. Thus there is a fundamental difference between the periodic and
non-periodic problems and we cannot make a direct comparison between the two
approaches. Note however that our formulation leading to (3.4) is valid for the
non-periodic problem and places no restriction on the timescale or amplitude of the
unsteadiness. Thus it may well be the case that (3.4) is the appropriate formulation
of the stability problem which extends the small-amplitude slow-timescale work of
Tubino.

4. The receptivity problem for alternating bars
In order to motivate the perturbation analysis given below it is useful to consider

the physical processes which will be described by the analysis and see how these
processes generate an instability wave. Suppose in the first instance we assume a
steady flow in a straight channel and now introduce a small indentation of size ε

at one wall. Since the indentation is small the flow field, water depth and surface
elevation will all be perturbed at O(ε) and, by taking a transform in s, we can
imagine that the perturbation contains all wavenumbers in the flow direction. If the
width/depth ratio is comparable with its critical value then the linearized instability
problem has no stationary unstable modes so the effect of the indentation will decay
exponentially away from its locality. At significantly higher values of β stationary
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unstable modes are possible and a resonant response akin to that found by BS occurs.
However, unstable stationary modes occur only at values of β typically 2–3 times
the critical value and nonlinear effects will dominate the flow by that stage so that
regime is probably only of academic interest. Therefore we will concentrate here on
width/depth ratios near the critical value and we do not have to concern ourselves
with a resonant stationary response by the flow.

Suppose then that the flow present before the indentation was introduced has a
small-amplitude time-periodic component of size δ. Since the unsteadiness is small the
indentation will still produce at leading order a steady perturbation to the uniform
state but the nonlinear terms in the governing equations will then generate O(εδ)
terms periodic in time and containing all wavenumbers in the flow direction. At
a given value of the frequency of the unsteadiness one of the wavelengths will be
unstable and a growing alternate bar will be produced. Thus flow unsteadiness and
spatial variations interact nonlinearly to produce instability waves. Such interactions
have been investigated in great detail in the context of shear flow instabilities in
both parallel and non-parallel flows. We shall now give the details of this type of
interaction in the context of alternating bar instabilities.

In the situation when the basic state is steady, equation (3.4) reduces to the
eigenrelation of CST by writing d/dt = −iω and noting that P (t, λ) is now independent
of time so that

−iω = P (λ) (4.1)

where we have now dropped the dependence of P on t . The reader is referred to
CST and BS and the references therein for a discussion of (4.1). However, it appears
that the absolute/convective nature of the instability (see, for example, Huerre &
Monkewitz 1990) has not been investigated. This is a straightforward task since the
eigenrelation is known explicitly for the problem under consideration and we find
that (4.1) defines a convectively unstable flow. This means that a disturbance to the
steady equilibrium state will be convected downstream from the position where it is
imposed and that, if the flow is not continually forced, the flow will return to the
equilibrium state everywhere except in a region infinitely far downstream of the initial
disturbance. Thus alternating bar instabilities like, for example, Tollmien–Schlichting
waves in boundary layers will only develop if they are continuously stimulated by
some mechanism. Here, we shall investigate one obvious such mechanism and show
how the amplitude of the transfer function associated with the induced bar may be
calculated from the spectrum of the forcing function.

The first point to make is that (4.1) leads to a neutral curve in the (β, λ)-
plane with ωr �= 0 apart from one point on the left-hand branch of the curve
at relatively small, physically unrealistic, values of the disturbance wavenumber. It
follows that, if the unstable wavenumbers at O(1) values of λ are to be stimulated,
the external mechanism driving the instability must input both the time and
streamwise periodic variations. We will assume that the inherent unsteadiness of
the basic states discussed in the previous section is responsible for the supply of
the appropriate temporal frequency. The downstream spatial variation required to
interact with the flow unsteadiness can be supplied by a variety of physically relevant
mechanisms.

First, we could allow the width of the channel in the unperturbed state to vary by
a small amount in the s-direction. Alternatively, we could allow the channel to have
a very small curvature. The simplest case is when we allow spatial variations in the
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s-direction to be driven by replacing (3.3) by

V = εV +
F (s), Qn = 0, n = 1,

V = 0, Qn = 0, n = −1,

where ε is small. These conditions can be taken to model inflow/outflow into the
channel from the sidewalls. (For example a small tributary flowing into the main
channel could be modelled by such a boundary condition.) We will refer to this as
the seepage problem. Next we suppose that the spatial variations are driven by an
indentation of one of the walls. Thus for example if we take the walls to be defined
by

n = −1, n = 1 + εF (s),

then, following a Taylor series expansion about n = 1, we find that, correct to order
ε, the boundary conditions to be imposed become

V = εF ′(s)U, Qn = εQsF
′(s), n = 1,

V = 0, Qn = 0, n = −1.

Since the most dangerous alternating bar instability has the ‘n’ velocity component
an even function of n, only the ‘even’ parts of the above conditions will lead to
the generation of unstable modes, so it is sufficient for us to consider the simplified
conditions:

V = εVF , Qn = εQF , n = ±1, (4.2)

where VF = V +
F (s)/2, QF = 0 for the seepage problem and VF = (1+ δ cosωt)F ′(s)/2,

QF = Φ0F
′(s)/2 for the indentation problem. We restrict VF and QF to be such that

they have Fourier transforms.
We consider the case when the basic state has only a small-amplitude unsteadiness.

We then write

Ū (t) = 1 + δ cos ωt, |δ| � 1, (4.3)

in which case

D(t) = 1 + dδ cos ωt + O(δ2),

where

d =
2

(1 − C ′/C)
(4.4)

evaluated with D(t) = 1. (Note that the above corresponds to equations (25), (26)
of the small-amplitude unsteady flow expansion of Tubino 1991.) We then seek a
solution of (2.1), (2.5) by expanding U, V, D, H in the form

U = 1 + δ cos ωt + εU1(s, n) + εδU2(s, n, t) + . . . ,

V = εV1(s, n) + εδV2(s, n, t) + . . . ,

D = 1 + δd cos ωt + εD1(s, n) + εδD2(s, n, t) + . . . ,

H = H0 + εH1(s, n) + εδH2(s, n, t) + . . . .

 (4.5)

Here the O(ε) terms are driven by (4.2) and the O(δε) terms are driven by the
interaction of flow unsteadiness with the spatially varying O(ε) flow. It is the O(εδ)
term which will contain the unstable alternating bar modes. The shear stresses,
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sediment flow rates and C are then expanded as

τs = C0{1 + δτso cos ωt + ετs1(s, n) + εδτs2(s, n, t) + . . .}, (4.6)

τn = C0{ετn1(s, n) + εδτn2(s, n, ) + . . .}, (4.7)

C

C0

= 1 + δd cos ωtĈ1 + εĈ1D1 + εδ[Ĉ2D1D2 + Ĉ1D2] + . . . , (4.8)

where

Ĉ1 =
C

′

0

C0

, Ĉ2 =
C

′′

0

C0

,
τs0

C0

= 2 cosωt + dĈ1 cos ωt,

τs2

C0

= 2U2 + 2U1 cos ωt + Ĉ2D1d cos ωt + C1D2 + 2U1dĈ1 cos ωt + 2 cos ωtĈ1D1,

τn2

C0

= V2 + V1 cos ωt + V1dĈ1 cos ωt,
τs1

C0

= 2U1 + Ĉ1D1,
τn1

C0

= V1.

4.1. The order-ε problem

If we substitute the above expansions into (2.1), (2.5) and equate terms of order ε, we
find that

∂U1

∂s
= −∂H1

∂s
− βC0[τs1 − D1], (4.9a)

∂V1

∂s
= −∂H1

∂n
− βC0τn1, (4.9b)

∂U1

∂s
+

∂V1

∂n
+

∂D1

∂s
= 0, (4.9c)

∂Qn1

∂n
+

∂Qs1

∂s
= 0, (4.9d)

with

Qs1 = Θ0Φ
′
0τs1,

Qn1 = Φ0

[
V1 − R

[
F 2

0 H1n − D1n

]]
, R =

r

βC0Θ0

.

Thus the equations which determine the flow field, depth and surface elevations
induced by forcing due to the indentation or seepage are homogeneous differential
equations with inhomogeneous boundary conditions generated by the forcing. The
homogeneous form of these equations describes the spatial evolution of small-
amplitude perturbations to the steady uniform state. If we define the Fourier transform
of U1 etc. by

U 1 =

∫ ∞

−∞
e−iλsU1 ds

then, transforming the above system, and eliminating U 1, V 1 yields

d

dn
Y = B(iλ, 0)Y , Y =


D1

D1n

H 1

Hn

 , (4.10a, b)

where B(iλ, iω) is defined in Appendix A.
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The unstable modes of the alternating bar problem for disturbances ∼ ei(λs−ωt)

satisfy the eigenrelation ∣∣B (iλ, iω) − 1
2
mπnK

∣∣ = 0. (4.11)

Here K is a matrix with all elements zero except k11 = k33 = −k22 = −k44 = 1. We
assume that β has been chosen such that ω = 0 is not an eigenvalue of (4.1). The
boundary conditions appropriate to (4.10) are

Y2 = −V F

[
1

R
+ F 2

0

(
iλ + βC2

0

)]
+

QF

RΦ0

, Y4 = −
(
iλ0 + βC2

0

)
V F , n = ±1. (4.12)

It is straightforward but tedious task to solve (4.10), (4.12) and if σ1 and σ2 are the
roots, with positive real part of∣∣∣∣ b21 − σ 2 b23

b41 b43 − σ 2

∣∣∣∣ = 0;

then, after some manipulation, we find that

H 1 = P1

cosh σ1n

σ1 sinh σ1

+ P2

cosh σ2n

σ2 sinh σ2

= V F H1(n) + QF H2(n),

D1 =
P1b23 cosh σ1n(

σ 2
1 − b21

)
σ1 sinh σ1

+
P2b23 cosh σ2n(

σ 2
2 − b21

)
σ2 sinh σ2

= V F D1(n) + QF D2(n),

where P1 and P2 satisfy

P1 + P2 = −
(
iλ + βC2

0

)
V F ,

b23P1

σ 2
1 − b21

+
b23P2

σ 2
2 − b21

= −
(

1

R
+ F 2

0

[
iλ + βC2

0

])
V F +

QF

RΦ0

.

Finally, we note that U1 and V1 can then be expressed in the form

U 1 = V F U1(n) + QF U2(n), V 1 = V F 1V1(n) + QF 1V2(n),

together with similar expressions for D1, H 1.

4.2. The order-εδ problem

The nonlinear terms in the governing equations cause the order-δ unsteady flow to
interact with the order-ε spatial variations produced by the indentation or seepage to
produce an εδ correction to the uniform flow. The crucial point to notice is that this
correction will be time periodic and have a spatial dependence on the flow direction.
At order εδ we find the following equations for u2, v2 etc.:

∂U2

∂s
+

∂H2

∂s
+ β[τs2 − D2]C0 = −cos ωt

∂U1

∂s
− βC0 cos ωt [2dD1 − dτs1] + βD1τs0C0,

(4.13a)

∂V2

∂s
+

∂H2

∂n
+ βC0τn2 = −cos ωt

∂V1

∂s
+ βC0 cosωt dτn1, (4.13b)

∂U2

∂s
+

∂V2

∂n
+

∂D2

∂s
= −cos ωt

∂D1

∂s
− cos ωtd

∂U1

∂s
− d cos ωt

∂V1

∂n
, (4.13c)

∂

∂t

[
F 2

0 H2 − D2

]
+ Q0

[
∂Qn2

∂n
+

∂Qs2

∂s

]
= 0. (4.13d)

Qs2, Qn2 can be found in Appendix A.
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We have seen above that the O(εδ) system is forced periodically in time with period
2π/ω so we can seek solutions of the form

(U2, V2, H2, D2) = e−iωt (Û 2, V̂ 2, Ĥ2, D̂2) + complex conjugate

where Û 2, V̂ 2, etc., are functions only of n and s. After taking a Fourier transform
in s and some algebra we can show that the order-εδ system may then be written in
the form

dX
dn

= B (iλ, iω) X +


0

∆1(λ, n)

0

∆2(λ, n)

V F (λ) +


0

∆3(λ, n)

0

∆4(λ, n)

QF (λ), (4.14)

with

X =


D2

D2n

H 2

H 2n

 (4.15)

and ∆1, ∆2 are given in Appendix A.
The above system must be solved subject to X2 = X4 = 0, n = ±1 for the seepage

problem and (4.12) with QF = 0 for the indentation problem. We can therefore write
H 2 as

H 2 = V F (λ)H3 (λ, n) + QF (λ)H4(λ, n). (4.16)

The inverse transform of H 2 gives

H2 =
1

2π

∫ ∞

−∞
eiλsH2 (λ, n) dλ. (4.17)

The function H2(λ, n) will have simple poles in the complex λ-plane at any point
where λ = λ∗ and ω satisfies (4.1) with m = 1. For a given value of ω and β above the
critical value, there will be one such value of λ∗. For larger values of s, the right-hand
side of (4.17) will be dominated by the contribution from λ∗ so that

H2 ∼ e−iωt+iλ∗s(R1(λ
∗)V F (λ∗) + R2(λ

∗)QF (λ∗)) + complex conjugate (4.18)

where R1(λ
∗), R2(λ

∗) are the residues of H3(λ, n), H4(λ, n) at λ = λ∗. Equation (4.18)
thus shows that the flow oscillations coupled to the spatial variations at O(δ) generate
an alternating bar of amplitude A = εδ(R1(λ

∗)V F (λ∗) + R2(λ
∗)QF (λ∗)). We note here

that R∗
i (λ

∗), i = 1, 2, are independent of the spatial forcing in (4.18) so that the size
of the bar generated is linearly proportional to a combination of the transforms of
VF, QF evaluated at λ∗. Calculations show that R1(λ

∗), R2(λ
∗) are typically of size

10−1. Equation (4.18) predicts the small-amplitude response to unsteady and spatially
varying forcing of the flow. It shows how the amplitude of the response can be
predicted for any small-amplitude forcing and appears to be the first quantitative
prediction of bar size as a function of the flow environment. Note also that higher
modes can be preferentially forced by a suitable choice of the boundary conditions
but it seems reasonable to expect that in a real flow the spatial forcing will be
sufficiently complex that all modes can be stimulated. In that situation the first mode
will dominate because it will have the largest growth rate.

Now we shall discuss the implications of (4.18) for the two types of spatial forcing
considered here; clearly the mechanism will be operational for a variety of spatial



Alternating bar instabilities in unsteady channel flows 67

forcing mechanisms since all we need is essentially a small-amplitude spatially varying
flow which can interact with an unsteady flow to generate an instability wave.

4.3. The seepage problem

Now let us consider the case when the spatial variations are driven by seepage so
that VF = V +

F (s)/2, QF = 0. An important point to note is that for a given channel
geometry the only part of the response function which depends on the nature of the
seepage function VF is the quantity |V F (λ∗)|. For the situation under consideration
here we can now discuss how the amplitude of the bar depends on the forcing function
V +

F . Suppose for example that we are constrained to allow a given amount of fluid to
enter the channel but we can vary the interval in L over which the fluid enters. Thus
we take

V +
F =

2

L
, −L < s < L,

V +
F = 0, otherwise.

The function |V F | is then given by

|V F | =

∣∣∣∣ 4

λ∗L

∣∣∣∣ |sin λ∗L|

= 4

∣∣∣∣sin J

J

∣∣∣∣
where J = λ∗L. Thus if L is chosen to be given by

L =
nπ

λ∗

then there is no forced alternating bar mode. This corresponds to the case when
the width of the inlet channel is an integer multiple of the bar wavelength. On the
other hand the largest bar is found by taking the limit L → 0 so that |V F | → 4
for each value of λ∗. We conclude that if fluid is to be discharged into a channel
then the discharge should be made as wide as possible in order to minimize bar
formation downstream of the inlet. Conversely if a particular migrating bar needs to
be generated then the fluid should be pumped as an oscillatory flow of the desired
frequency through as small an inlet as possible. This latter possibility suggests an
experimental technique for bar generation not unlike the vibrating ribbon used to
provoke Tollmien–Schlichting waves in boundary layers; see for example Schubauer &
Skramsted (1947).

We stress that the above receptivity calculation is essentially unchanged if we assume
that the order-ε forcing is produced by curvature effects, channel width variations or a
variety of other means. The main point is that the nature of the interaction will always
lead to an induced bar of amplitude proportional to the Fourier transform of the
function defining the spatial variations of the channel evaluated at the wavenumber
corresponding to the driving frequency.

4.4. The indentation problem

Next we consider the case when the spatial variations are driven by an indentation
so that VF = F ′(s)/2, QF = Φ0F

′(s)/2. The amplitude of the induced wave is now
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proportional to the modulus of the transform of F (s). We consider the case

F =
2

L
, −L < s < L,

F = 0, otherwise,

so that the area of the indentation is fixed. Following the discussion given above for
the seepage problem we see that if L = nπ/λ∗ there is no induced bar and the largest
bar is induced in the limit L → 0.

Finally we close this section with some comments on the relationship of this
calculation to the work of Tubino & Seminara (1990) on the nonlinear interaction
of free and forced bars in channel flows. In that paper the forced bar essentially
corresponds to the order-ε system discussed above. However, the basic state is steady
so an unstable wave cannot be directly stimulated by the forced bar. In fact two
nonlinear interactions are required to force the bar mode and, in effect, Tubino &
Seminar study the effect of a small forced bar on the linear instability of a free bar.
The effect is order ε2 in the absence of unsteady effects. In our calculation the effect
is order ε because of the coupling of the forced mode with the flow unsteadiness.

5. Conclusion
Our concern in this paper has been the role of unsteadiness on alternating bar

instabilities in sediment-carrying rivers. As a starting point it was necessary to
generalize previous steady flow descriptions of the unperturbed basic state to the
time-dependent regime. We found that the unsteady equations of motion for the fluid
and sediment admit a separable solution with the system responding in phase at all
values of the downstream variable. Mathematically this case is equivalent to taking a
long-wave approximation to more general unsteady flows.

Thus the simple class of unsteady unidirectional flows derived in § 2 generalizes
the unidirectional flows considered previously as the starting point for an alternating
bar instability problem. Note however that the time dependence of the flow can
be specified through either the depth, velocity or flux and (2.17) is then solved to
determine the time dependence of the other flow quantities. In fact our approach
reduces to the small-amplitude unsteady flow considered by Tubino (1991) in the
linearized limit.

In our stability analysis we considered only time-periodic basic states but our
analysis is relevant to quite general unsteady flows. This means that in Floquet theory
we have a natural framework to define what we mean by the instability of an unsteady
flow. For a more general time dependence it is necessary to look at instantaneous
growth rates or possibly use an energy-based stability method to delineate stable and
unstable regimes.

Figures 6 and 8 are the crucial ones that show the effect of flow oscillations
on the critical width and depth. We see that the critical wavenumber increases
significantly with δ and the critical depth is significantly decreased if we try to
compare our results with bars generated under bankfull conditions. These predictions
are difficult to compare with observations but could in principle be checked by
laboratory experiments.

We also found that the introduction of flow oscillations causes the linear stability
solution to have an infinite number of eigenvalues which have a steady part to their
eigensolutions. The steady part of the eigenfunction does not propagate downstream
and will interact with curvature variations. Indeed at these resonance points the
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mechanism of BS will be operational and there will therefore be a strong coupling
between the alternating bar and curvature perturbations. A brief discussion of
nonlinear effects is given in Appendix B: we see that in the presence of nonlinear
effects, a much stronger coupling occurs and all modes will have part of their energy
fixed in space by unsteadiness.

Now let us discuss the other crucial role played by flow unsteadiness in the
generation of bars. We refer to the discussion of the so-called receptivity problem
in § 4. Here the unsteady amplitude is too small to alter the flow stability properties
directly but now the unsteadiness provides a source of energy which can interact
with spatial structures to produce alternating bars. It appears that this type of
receptivity problem has not previously been addressed for bars even though it is
now commonplace in other branches of hydrodynamic stability theory. Essentially
the receptivity problem addresses questions associated with the origin of disturbances
in a flow which is known to be unstable. As in many other fluid flows there exists
a wealth of possible flow instabilities and the disturbance environment associated
with the basic state effectively fixes the disturbance or group of disturbances to
be amplified into a nonlinear state. In the flow over wings acoustic disturbances
interacting with imperfections (e.g. rivets) on the wing surface internalize growing
Tollmien–Schlichting waves. Experimental investigations of the receptivity problem
have confirmed the theoretical work on the topic. In geomorpology this matter has
not been studied.

The structure needed to generate growing disturbances in an unstable flow can be
readily understood. First, if linear stability theory shows that instability first occurs
through travelling wave disturbances, it is clear that the disturbance environment
must introduce both spatial and temporal variations. Spatial variations can occur
because of curvature variations, indentations, inflow or outflow and many other
effects. However the key point is that these variations induce a steady spatially
varying response which will decay exponentially away from the source if the flow is
unstable only to travelling wave disturbances. Nevertheless these spatial variations
are crucial because they can then interact with flow unsteadiness to produce growing
travelling waves. Thus in the neighbourhood of say an indentation the leading-order
response of the flow is to produce a localized spatial structure near the indentation. At
higher order this structure interacts with flow unsteadiness to produce travelling wave
disturbances which grow exponentially as they propagate away from the indentation.
Thus, far downstream the flow contains no record of the spatial variation of the flow
which selectively amplified the disturbance in question.

The major results from the receptivity work concern the relationship of the
amplitude of the induced instability wave to the spatial variations which induced
it. Our work shows clearly how the size of an induced bar can be calculated from the
signature of the spatial structure inducing it. Thus we have given an explicit formula
for the amplitude of the bar generated by different types of spatial inhomogeneities.
It remains to be seen whether the mechanism we have described can be verified
by careful laboratory experiments. If the receptivity process we have described is
indeed operational in rivers then it will provide the means to understand how bar
wavelengths and amplitudes are selected at any point along the river. In fact it is
straightforward to formulate a strategy to determine the amplitudes of a finite band
of unstable wavenumbers. Suppose that we know all the flow properties of a given
river and at the given value of β there is a range of unstable wavenumbers. If we
choose K wavenumbers spanning this interval and choose K +1 indentations then we
can choose the indentation amplitudes {sk} to minimize or maximize the amplitudes
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of the different modes stimulated by the indentations; see for example Balakumar &
Hall (1999) for related methods applied to boundary layer control by suction. This
would provide a method to estimate the best and worst case scenarios for the
generation of bars by random indentations.

This work was carried out whilst the author was visiting CESPR, Florida Statue
University and the hospitality of that organization is acknowledged. In particular
the author is indebted to Professors Furbish and Schmecklee for numerous helpful
discussions. The author also wishes to thank the referees for constructive comments.

Appendix A
The matrix B(iλ, iω) appearing in (4.10) is defined by bij = 0 apart from

b11 = 1, b21 = a7, b23 = a8, b34 = 1, b41 = a4, b43 = a5,

with

a1 = 1 +
2βC2

0

iλ
, a2 = βC0(C0Ĉ1 − 1) −

(
iλ + 2βC2

0

)
,

a3 = iλ + βC2
0 , a4 = −a2a3

a1

, a5 = − iλa3

a1

,

a6 = Φ0

(
RF 2

0 +
1

a3

)
,

a7 = − 1

RΦ0

{
iω

Q0

− a4a6 + C0Θ0Φ
′
0

[
Ĉ1iλ − 2βC0

a1

(C0Ĉ1 − 1)

]}
,

a8 = − 1

RΦ0

{
− iω

Q0

− a5a6 − 2

a1

iλΘ0Φ
′
0C0

}
.

The functions Qs2, Qn2 appearing in (4.13) are given by

Qs2 = C2
0Θ

2
0Φ

′′

0τs0τs1 cos ωt + C0Θ0Φ
′

0τs2,

Qn2 = Φ0

{
V2 − V1 cos ωt − R

[
F 2

0 H2n − D2n

]
+

R

2
τs0

(
F 2

0 H1n − D1n

)
+

Φ ′
0

Φ0

τs0C0Θ0

[
V1 − R

(
F 2

0 H1n − D1n

)]}
,

The quantities ∆1, ∆2 in (4.15) are defined by

∆1 = − 1

RΦ0

(
Φ0F

′
2

a3

− a6F1 + 2C0Θ0Φ
′
0

F1

a1

− F4

)
, ∆2 =

a3

a1

(F1 − a1F3) + F ′
2,

F1 = U1

{
−2βC2

0 − iλ + 2βC2
0d − 2βC2

0dĈ1

}
+D1βC0{2 − dĈ2 − 2Ĉ1 + dC0Ĉ1 + dĈ1 − 2d}.

F2 = −V1

{
iλ + βC2

0 [1 + dĈ1 − d]
}

,

F3 = −
{

iλD1 + iλdU1 + d
∂V1

∂n

}
,
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F4 = −Φ0Q0{−V1n}
[
1 − Φ ′

0

Φ0

C0Θ0(2 + dĈ1)

]
− RC0

(
F 2

0 H1nn − D1nn

) (
Φ ′

0

Φ0

Θ0 +
1

2

)
(2 + dĈ1)

− C0Q0Θ0Φ0{iλD1(Ĉ2 + 6Ĉ1) + iλU1(10 + 2dĈ1)}

and ∆3, ∆4 are found from the expressions for ∆1, ∆2 respectively by replacing H1,

V1, D1, U1 by H2,V2, D2, U2 respectively.

Appendix B
It was shown by BS that the point on the neutral curve where ωn vanishes (say

λ = λn0) has a particular significance when the river is allowed to have a small
curvature. This problem is described by the equations here, modified to allow for the
effect of secondary flows induced by curvatures on the sedimentation process. If χ is
a measure of the curvature, then the flow driven by the curvature can be found by
expanding U in the form

U = 1 + χ1/3U1(n, s) + · · · .

With β = βn + χ2/3β̂ and it is found that U1 and the corresponding flow property
perturbations at order χ satisfy the steady linearized version of the linear system found
in § 3 with δ = 0 but forced by inhomogeneous curvature-driven terms. The resonance
occurs when the curvature has in its Fourier decomposition the wavenumber λn0 and
following Hall & Walton (1978) it can be shown that the imperfect bifurcation problem
required to smooth out this singular behaviour leads to an amplitude equation of the
form

dA

dT
= β̂h1A + h2A |A|2 + h3.

Thus the curvature effect leads to the term h3 above and this unfolds the bifurcations
into a smooth transition to a steady finite-amplitude wave selected by the curvature.

Next we show that when δ = O(χ 1/2), the above equation may be generalized
to describe curvature, bar and flow unsteadiness interacting to select a particular
bar structure driven by curvature and unsteadiness, with the curvature reinforced by
the bar and the flow unsteadiness. Now suppose that δ, the amplitude of the flow
unsteadiness, is small and that the unsteadiness is periodic in time with period 2π/ωn.
The parameters δ and χ are taken to be such that δ = χ1/2 so we formally write
δ = Dχ1/2 and consider the limit χ → 0, with D held fixed. We now expand U in the
form

U = 1 +
[
Deiωtχ1/2 + complex conjugate

]
+

[
A(T )χ1/2ei(λns−ωnt)U1(η) + complex conjugate

]
+

[
χU2(η)eiλnsJ + complex conjugate

]
+ · · ·.

The first term above corresponds to the unperturbed steady flow whilst the second
term is the small-amplitude oscillation imposed on the later flow. The third term is
a finite-amplitude disturbance appropriate to channel widths β such that

β = βn + χβ̂n
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with T = χt . The interaction associated with the second and third terms in the ex-
pansions of U produces an order-χ term which reinforces the curvature-driven term
of order χ . However, the interaction of the second and fourth terms above produces a
resonant response because it generates a neutrally stable wave ∼ ei(λns−ωnt). Following
the procedure of Hall & Walton (1978) we find that A will satisfy an equation of the
form

dA

dT
= β̂nh1A + h2A |A|2 + h4DJ

where h4 is a constant. The constant J is determined by the solution of the order-χ
problem, which leads to an equation of the form

J = J0 + h5AD

where J0 is a constant determined by the scaled channel curvature, and h5 is another
constant. The above equations can be combined to give

dA

dt
= A{β̂nh1 + h4h5|D|2} + h2A |A|2 + h4J0D.

Thus curvature and flow unsteadiness combine to give an imperfect bifurcation
problem for the alternating bar. The bar then drives J through the equation above so
that the bar modifies the curvature. For large values of β̂1/2

n we have a large response
to the stationary part of the disturbed flow. Thus, flow unsteadiness couples with
migrating bars to produce a relatively large-amplitude stationary s-periodic structure
which might play a role in bend formation.
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